
Evaluation of a Candidate
Flight Dynamics Model Simulation

Standard Exchange Format
Bruce Jackson

NASA Langley Research Center
Hampton, Virginia

Brent W. York
Naval Air Systems Command

Patuxent River, Maryland

Bruce Hildreth
Science Applications International Corporation

Lexington Park, Maryland

William B. Cleveland
Northrop Grumman Info. Technology

Mountain View, California

2004 AIAA Modeling & Simulation Technology Conference
Providence, Rhode Island

AIAA 2004-5038

Problem: Simulation Rehosting

• Required whenever a model is shared
• Increasingly common, thanks to…

– Increased reliance on numerical analysis
– Contractor/government teaming
– Moore's Law
– Multiplicity of training devices

• Currently very labor intensive
– Different languages / conventions / traditions

Typical: four to eight months to rehost & validate new sim

The Need for a Standard

• Standards promote productivity
– Improved information exchange

• More accurate simulations
• More consistent simulations
• Lower cost

– Improved interoperability
– Increased software reuse

• Rapid sim rehosting - minutes instead of months
• Potential for industry significant cost saving

2002 paper: $ 6+ M per year per aircraft model

Concept

The Standard
(XML-based)

Site C
(importer)

Site A
(exporter)

Report
Editor

Std. Model
Editor

Site B
(importer)

Other
Commercial

Tools

Export
API

Standard Tools

Import
API

Import
API

Concept

• Need for standard representation of
vehicle dynamics/aerodynamics

• Get away from ad-hoc, site-specific
“standards”

• Many are possible; we’re proposing one
• Standard is superset of typical site-

specific standards

An exchange standard: no requirement for end use

Previous efforts

• MODCOMP - 1980's - attempt to standardize on
software & hardware for all training simulations

• Similar attempts to standardize software modules
• DIS/HLA/SEDRIS – sim environment & network
• M&S T.C. started data standards effort in early 90’s
• Efforts focused on vehicle dynamics model
• Objective: to easily exchange a model

from one site to another

Initial requirements for a standard
1. Function table data – required in most non-linear models.

Standard will add:
– Provenance (history / data source / modifications)
– Statistics (uncertainty / Monte Carlo data)
– Mathematics required to combine functions and inputs

into force & moments acting at a specified location
2. Check case data –

required to verify proper model transfer
3. Signal definitions (variable names) –

required to clearly state what the transferred information
is (units, axis system, sign convention, etc)

– Includes methodology for naming new variables
– Includes axis system definitions

Proposed AIAA Sim Data Standard –
Standard Function Table with statistics & provenance

Four elements per
data point

The statistics data
(the confidence

intervals)
are optional

1.6

0.6

1.4

1.2

1

0.8

0.4

0.0

-0.2

0.2

-50. 0 50 100 150

CLALFA(alfa, Mach,delta_s)

 Ref

, C

Provenance
ID }

A

A

A

A

B

B
B

B

A
C

AC
C

}
Statistics

 –σ σ

, –.0032, 0068

δs Mach α CL

0.0, 0.8, 60, 0.60

Independent
variables}

Dependent
variable

}

Proposed AIAA Sim Data Standard –
axis systems

• Use the overlap of existing AIAA/ANSI
Recommended Practice R-004-1992 and
DIS Axis Systems
– Body axis system
– Earth fixed axis system

• Addition of a Flat Earth (local) axis system
for convenience

Clearly defined axes are critical to successful exchange

+x

+z

+y

Proposed AIAA Sim Data Standard –
variable name definitions

• Standard dictionary of variable names
• Objective:

– Clear definition of the significant components and parameters
of a model and its validation data.

– For example: "Angle of attack" means:
• wing angle of attack?
• fuselage angle of attack?
• inertial angle of attack?

• Extremely important in validation.
Clearly defined variable names are critical to successful exchange

• includes turbulence effects?
• in degrees or radians?
• ranging from ± 90 or ± 180 degrees?

An XML approach

• eXtensible Markup Language (XML) becoming
popular way to encode data for on-line exchange

• Text-based human/machine readable files
• Lots of XML utility programs available
• Specialized set of markup tags developed:

Dynamic Aerospace Vehicle Exchange Markup
Language (DAVE-ML)

• First proposed in 2002 (AIAA M&ST Monterey)

DAVE-ML features

• Language- and facility-independent
• Encodes non-linear function tables
• Encodes build-up equations (via MathML)
• Encodes history & provenance of model
• Encodes statistical uncertainty of data
• Self-documenting (via XSLT)
• Can include validation data (checkcases)

Example: DAVE-ML
transformed into XHTML

Example: DAVE-ML
converted to Simulink®

Status of simulation standards efforts
• A data standard has been developed by M&S T.C.

– The standard defines the information that will be exchanged
• A Recommended Practice (RP) for implementation

has been developed by an informal DAVE-ML
steering subcommittee
– The RP defines how the information is exchanged

• The RP must be tested
– To assure no critical components have been left out
– To assure it is “user friendly”

DAVE-ML is a candidate RP and needs testing

RP Demonstration I (2003-2004)

• Two existing aerodynamic models encoded
with DAVE-ML as examples

• Two simulation facilities (Ames and Pax)
developed import tools

• Ames also developed an export tool
• Successfully demonstrated import and

automatic validation of aero models

Example models used for demo I

Fighter subsonic aero model
– 51 variables, 18 tables, 744 points
– Switches & absolute value nonlinear elements
– 17 validation checkcases included
– 154 KB file with 2,712 lines

Concept development lifting body aero model
– Supersonic and subsonic regimes
– 361 variables, 168 tables, 6,240 points
– 24 validation checkcases included
– 1.2 MB file with 22,299 lines

Demonstration I results

• NASA Ames results
• NAVAIR Patuxent River results

NASA Ames
• Historically a FORTRAN-based facility
• Employ Function Table Processor (FTP)

precompiler to create FORTRAN table
interpolation subroutines for each table

• Wrote Perl scripts to import DAVE-ML into FTP
source file, FORTRAN code snippets,
checkcase routines

• Wrote Perl scripts to export FTP input files into
DAVE-ML files

• Reduced import time from "several" to single week

NAVAIR Patuxent River

• Formerly FORTRAN, now C++ house
• DAVE-ML support planned for next release

of CASTLE (v6.0) simulation executive
• Successfully imported DAVE-ML example

model at run time into C++ aero model object
• No intermediate C++ code generated

Additional progress
• Informal DAVE-ML steering committee formed

(Bruce Hildreth as chair – bruce.hildreth@saic.com)
• DAVE-ML website created:

http://dcb.larc.nasa.gov/utils/fltsim/DAVE
• Discussion list created:

simstds@larc.nasa.gov
• On-line DAVE-ML reference manual available
• Java tool to convert DAVE-ML into Simulink®

– Tested with several internal NASA projects;
one was 12.5 MB / 107 KLOC / 97 tables / 717 K pts

Next steps

• Invite additional participation / feedback
• Submit to AIAA; seek ANSI/ISO standard and

recommended practice
• Develop model editor and report generator

applications
• Distribute existing tools developed to test

DAVE-ML for use by the modeling community

Conclusions
• The initial version of the standard is ready

– Substantial savings of time & effort clearly possible
– Improve efficiency of the simulation community

• DAVE-ML file can serve as model archive
– Includes provenance, equations, data, statistics
– Applicable to automatic Monte Carlo studies
– Easy to grow and change as technology requires

• Exchange with NAVAIR and NASA Ames has
demonstrated DAVE-ML is ready for submittal as the
Recommended Practice for simulation data exchange

Questions?

Backup slides

Existing standards

• Simnet/DIS/HLA-networking/architecture
• SEDRIS- environmental data representation
• FAA Advisory Circulars (AC 120-40)
• Standard atmosphere
• Standard world (WGS –95?)

Existing Projects, Standards or Guideline Documents

• General
– DATA Flight Simulator Design and Performance Data

Requirements, 9th Ed. 1993
– ANSI/AIAA Recommended Practice: Atmospheric and

Space Flight Vehicle Coordinate Systems
• Simulation Networking/Architecture Standards

– HLA / DIS - 4 Standards
• Message Content
• Communicative Architecture
• Environment
• Fidelity, Exercise Control and Feedback

Existing Projects, Standards or Guidelines (cont’d)

• Others
– ARINC 610A Guidance for Use of Avionics Equipment and Software in

Simulators
– FAA AC 120-40B(c) Airplane Simulator and Visual System Evaluation
– Project 2851 Visual Database Specs.
– POSIX Computer Operating System Standard
– MIL-STD-1815 Ada language
– MIL-STD-2167A S/W Development
– Joint Modeling and Simulation System (JMASS)
– Software Technology for Adaptable and Reliable Systems (STARS)
– CALS Standards (apply to computer data formats?)

Variable Names – key points
• Variable Naming convention includes:

– Identification of Simulation States and Inputs
– Units- either English or SI

• Linear System Formulation
– x = states
– u = inputs (or controls)

States and Inputs are key – everything in the
dynamic simulation depends upon them
They should be easily identifiable for good software
documentation and maintainability
Units for clarity and documentation purposes

dx/dt = Ax + Bu
Y = Cx + Du

Variable Naming Convention
• Each name has up to six components

– (prefix) (variable source domain) (axis or reference system)
(specific axis or reference) (core name) (units)

– Follows "camelCase" naming convention

• Examples
– s_bodyXVelocity_fps s_ prefix indicates that this variable is a

state
– sd_bodyXAcceleration_fps2 sd_ prefix indicates that this variable

is a state derivative
– aeroXBodyForceCoefficient
– thrustYBodyForce_lbf

Standard variable names clearly define the information being exchanged

Variable Names – Guidelines

• Meaningful name, not mnemonics, standard
abbreviations okay

• Distinct parts of the variable names separated by
underscores

• No more than 60 characters in length
• First letter of each part of word is capitalized

– Abbreviations are all CAPS
– Units are all lower case

Variable Names
• Names database and definition complete
• Naming convention taken from STARS Simulation work

(Lead by NAWCTSD)
• Short names taken from NASA Ames

Example Table of Names

Symbol Short Name Long Name Same as Description Units Sign
Initial
Value

Minimum
Value

Maximum
Value Reference Note

Date Last
Changed

8 Character 33 Character name STARS? (including axis system if applicable) Convention

PHI Euler_Roll_Angle_deg y Roll Euler Angle, L (local) Frame DEG RWD -180 180 2
THET Euler_Pitch_Angle_deg y Pitch Euler Angle, L (local) Frame DEG ANU -90 90 2
PSI Euler_Yaw_Angle_deg m Yaw Euler Angle, L (local) Frame DEG ANR -180 180 2

Φ PHIR Euler_Roll_Angle_rad y Roll Angle, L frame RAD RWD −π π 10) 1.3.3.3 1,2
Θ THETR Euler_Pitch_Angle_rad y Pitch Angle, L frame RAD ANU −π/2 π/2 10) 1.3.3.2 1,2
Ψ PSIR Euler_Yaw_Angle_rad m Yaw Angle, L frame RAD ANR −π π 10) 1.3.3.1 1,2

PHID Euler_Roll_Angle_Rate_rad_p_sy Euler roll rate, L frame RAD/SEC RWD
THED Euler_Pitch_Angle_Rate_rad_p_sy Euler pitch rate, L frame RAD/SEC ANU
PSID Euler_Yaw_Angle_Rate_rad_p_sy Euler yaw rate, L frame RAD/SEC ANR

Variable Names – Issues – Units

• Why units? Compare
CLFlaps0 = CLAlfa*angleOfAttack + CLDe * De +
CLQ*QB*chord/(2.0*trueAirspeed)

vs
CLFlaps0 = CLALFA_prad*angleOfAttack_rad +
CLDe_pdeg*De_deg+
CLQ*s_bodyPitchRate_radps*chord_f/(2.0*trueAirspeed_fps)

vs
CLFlaps0 = CLALFA_pdeg*angleOfAttack_deg +
CLDe_pdeg*De_deg+
CLQ*s_bodyPitchRate_degps*chord_f/(2.0*trueAirspeed_fps)

Variable Names – Units

• Conclusion – Units included makes code
– More self documenting
– Less ambiguous
– Works for English or Metric System
– Helps catch homogeneity of units errors
– Longer to type (However typing is by far the

shortest part of s/w development)

Example Variable Names

•s_BodyXVelocity_fps
•sd_BodyXAcceleration_fps2
•GEAxisZVelocity_fps
•s_BodyRollRate_radps
•YBodyThrustForce_lbf

