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Synopsis 
Aircraft flight dynamic models are developed in many different source formats. When an aircraft 
simulation was used entirely in-house, this diversity was not a problem. In recent years, however, a 
single stovepipe entity taking an aircraft from concept to production is rare. Instead, teaming 
arrangements with other manufacturing concerns and government agencies are now the norm. As a 
result, the sharing of aircraft flight dynamic models is much more commonplace. Unfortunately, each 
organization has their own simulation framework, coding standard, source language, and data format, 
which requires a laborious and error-prone manual translation or re-hosting of the simulation model 
between team members. To alleviate this time-consuming re-hosting, the American Institute of 
Aeronautics and Astronautics (AIAA) Modeling and Simulation Technical Committee (MSTC) has 
developed a text-based flight dynamic model exchange format, which represents a 'neutral ground' 
standard that is facility- and programming-language-independent while providing distinct advantages 
over current practices. The cost and time required to share and update aerodynamics, control laws, 
mass and inertia, and other flight dynamic components of the equations of motion of an aircraft or 
spacecraft simulation can thereby be reduced. A 2002 paper1 estimated over $6 million in savings 
could be realized for one military aircraft type alone. This paper describes the result of efforts by the 
MSTC to develop a standard flight dynamic model exchange standard based on a specialized 
extensible markup language grammar. This standard, the Dynamic Aerospace Vehicle Exchange 
Markup Language (DAVE-ML), is now being proposed as an ANSI/ISO standard. 

Motivation and Background 
At the dawn of flight simulation, different aeronautical organizations and research laboratories 
developed increasingly sophisticated mathematical models of aircraft flight dynamics. Often these 
models were written as differential equations on early electronic analog computers. As the power of 
digital computers grew, the ability to numerically integrate these equations of motion allowed for 
solution of the resulting description of motion in real-time. FORTRAN was an early language of 
choice for flight simulation dynamic models, but due to computational limitations, much of the 
simulation calculations were written in machine language or assembler code. These usually included 
performing linear interpolation of wind-tunnel-derived aerodynamic coefficients. Only in the last few 
decades have flight models written entirely in higher-order languages been solvable in real-time on 
typical consumer-level computers.  

Due to the diversity of early flight research (including airframe manufacturers, airline operators, 
research laboratories, flight training device manufacturers and military services), no single approach 
to writing flight simulation code emerged. Even today there are few agreed-upon standards for 
encoding flight dynamic mathematical models. 

The importance of these mathematical models continues to grow, however. Due to the exponential 
increase in the cost of developing a new aerospace vehicle, the importance of using simulations for 
preflight prediction of flight performance, dynamic capabilities and flying qualities has become 
paramount. Program go-ahead decisions are often based on simulation and analytical results. At the 
same time, the sheer financial investment and risk of major aerospace acquisition programs has 
resulted in now-familiar teaming arrangements between the customer and one or more aircraft 
vendors, resulting in the need to share these flight simulation models reliably between dissimilar 
simulation laboratories. Simultaneously, the arrival of the electronic frontier in the form of the 
Internet has made the reliable transmission of large amounts of data, such as a flight simulation 
model, even more convenient - nine-track tapes are now in museums. 

                                                        
1 Jackson, E. Bruce and Hildreth, Bruce L.: Flight Dynamic Model Exchange using XML. AIAA Paper 2002-4482 
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So we find ourselves at a place in history in which the reliable and effortless exchange of a flight 
simulation model between various developers, analysts, testers, students and other users is not only 
extremely important but should be effortless to accomplish. This is not the case because one piece of 
the puzzle is missing: there is no agreed-upon standard for describing, digitally, in an unambiguous 
way, the flight dynamics of an aircraft.  

Two examples illustrate this problem: what should we call angle-of-attack, and how should tables of 
aerodynamic coefficients be described? 

In Western engineering texts, the Greek letter α is used to denote the relative angle between the 
airframe and the relative velocity of the aircraft through the atmosphere. Within NASA simulations, 
however, such variable names such as ALPDEG, ALFA, and angleOfAttack_deg have been used. 
Since no agreement exists on how to represent α in a Roman alphabet variable name (although we can 
agree on the symbol), not to mention the confusion over angular units of radians or degrees (is ALFA 
in degrees, or radians?), an impediment between rapid digital model exchange is obvious. Indeed, the 
fact that several names are used gives rise to the opportunity for them to have different definitions, 
which is a further impediment to correctly exchanging information. 

The vast bulk of an aerodynamic model in a high-fidelity flight simulation is taken up by large, multi-
dimensional tables of coefficients that represent non-linear relationships, or functions, between 
increments of forces and moments in response to changes in an aircraft's flight condition - Mach 
number, angle-of-attack, sideslip angle, control deflection, and throttle setting, to give a common 
example. Since linear function interpolation was a difficult problem to solve in early digital 
simulations (due to the requirement for a floating-point division, which used to take many more 
cycles than a multiplication), as many ways to represent interpolation tables exist as there are flight 
research organizations. Thus, the exchange of an aerodynamic model between simulation facilities 
almost always requires the reformatting of such tables, usually a lengthy process. This sometimes can 
be automated but, since there is no agreed 'standard' format, the automation algorithm must be created 
and tested for each such new exchange, while simultaneously converting variable names and 
sometimes rewriting the associated aerodynamic build-up equations to match the new facility's 
conventions. The resulting new implementation must be validated once it's completed as well. This 
'rehosting' of a perfectly fine flight simulation model, when it changes hands between aeronautical 
partners, can take months. 

We don't have to look far to find help, however; the World-Wide Web consortium2 has developed a 
means to describe data sets - XML, the eXtensible Markup Language3 - and mathematical 
relationships - MathML, the Mathematics Markup Language4 (itself an extension of XML). 

Objective 
The AIAA, through its MSTC, has undertaken the task of developing standards for the exchange of 
flight simulation models, primarily through the application of XML and MathML technology and 
through establishment of a standard set of common flight simulation variable names. This provides a 
way to unambiguously express, through a facility- and programming-language-neutral representation, 
the atmospheric flight dynamics of an aerospace craft. 

By development of two enabling technologies: 

• definition of a standard set of variable names and axis systems common to flight simulation 
domain, and 

• development of an 'application grammar' of XML unique to flight dynamics modeling,  

it is possible to describe the complete aerodynamic model of a flight vehicle in a human- and 
machine-readable way. This model can then be used in a real-time piloted simulation, a flight 
performance analysis tool, a Monte Carlo flight trajectory trade study, or in flying qualities estimation 

                                                        
2http://www.w3.org 
3http://www.w3.org/XML 
4http://www.w3.org/Math 
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methods. The format is also suitable for archival purposes since it can include provenance information 
and extensive reference documentation. 

The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML)5 can encode: 

• The aerodynamic model 'build-up' equations, or mathematical model 

• Multi-dimensional non-linear tables of coefficients (or equivalent polynomial describing 
functions) 

• Statistical and uncertainty parametric variations in the model 

• Provenance or history of various features of the model 

• Checkcase data for verification of the model 

Benefits of an XML-based Standard 
Typically there are many simulations of a specific aircraft model. There are: 

• Prime manufacturer developmental simulations (manned and unmanned) 

• Military research, development, test and evaluation (RDT&E) simulations (manned and 
unmanned) 

• Government research laboratory simulations (manned and unmanned) 

• Customer country simulations (manned and unmanned) 

• Part task crew training simulations 

• Full fidelity crew training simulations 

• Crew training mission capable simulations 

 
The principle benefit of the standard is to improve collaboration among these simulators and 
simulation facilities. Typically there are many simulations of the same system, often numbering over 
100. Also typically, these simulations only cross-pollinate model improvements and corrections on an 
ad hoc basis, if at all; thus, improvements made to one simulation do not normally proliferate to the 
other simulations. A barrier to cooperation is that each simulation generally has different hardware 
and software architectures. 

Since it is virtually impossible to have government labs and industry standardize all simulation 
architectures (also probably a bad idea for reasons beyond the scope of this paper), the MSTC arrived 
at the concept of a standard exchange format. If each of the simulation teams adopted this exchange 
format they would simply have to support one set of import and export applications (see figure 1) to 
exchange simulation models between any other simulation team. Practically speaking, each of these 
teams must already create export and import routines to exchange models and data with other 
interested parties. The standard just creates one format for all to use. This would save significant 
effort. Most importantly, this saving of effort would facilitate collaboration, which is the true goal and 
should provide the greatest benefit. 

                                                        
5 Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) Reference, version 2.0RC1, Oct. 2007. 
Available from http://daveml.nasa.gov/DTDs/2pRC1/DAVE-ML_ref.pdf 
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Figure 1. Schematic of improved simulation model exchange using a standard format 

General Benefits 
The general benefits of the standard, which apply to any type of simulation, include: 
 

Feature Benefit 
Improved standard function table 
format 

1. Write and verify import/export routines only once 
2. No requirement to rewrite or re-host any function tables  

Function table format includes data 
provenance 

3. Provenance allows the user to track where the data came from 
and its intended use 

4. Reduces mistakes in using functions improperly or for the 
wrong flight regime or configuration 

The standard is simulation 
architecture and code neutral 

5. Works with virtually any facility and language 

Implemented in XML 6. Many off the shelf editors and tools available facilitate the 
development of the import/export tools 

7. Resulting file both human and computer readable 
Equations can be represented in 
MATH-ML 

8. No requirement to rewrite parts of the aero model for many aero 
model changes 

9. Fewer mistakes when updating a model 
Standard includes use of standard 
axis systems 

10. No requirement to define the axis systems used in the model 
11. Fewer mistakes when transferring model 
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Feature Benefit 

Standard variable names 12. Simplifies transfer of information between facilities; use of 
standard names that already have clear definitions eliminates 
requirement to document the variables 

13. Custom or new variables are allowed; however the user must 
clearly define them, including units and axis system if 
applicable 

Standard naming convention for 
model-specific variables 

14. Allows the user community to expand the standard to further 
simplify the exchange of information 

Naming convention includes 
designation of states, state 
derivatives and (optionally) 
controls 

15. Improves documentation clarity 
16. Key variables are easy to find 
17. Facilitates software maintenance 

Naming convention includes units 
as part of the variable name 

18. Improves documentation clarity-reduces the occurrence of 
errors due to improper mixing of units 

19. Facilitates software maintenance 
 

Impact to the Life Cycle Support of the Simulation 
The benefits of the standard can be best expanded upon by discussing how the standard would apply 
in the life cycle of a simulation system. The phases of the engineering development and life cycle 
support a simulator that are clearly benefitted by the standard are listed below and discussed in the 
ensuing paragraphs. 

• Initial simulator development 
o Design 
o Code 
o Test 
o Verification 

• Life cycle support 
o Software maintenance 
o Update/ modify/ technology refresh 

Initial simulator development - Design 
One of the largest efforts in the design phase of a simulator model development is locating the data 
required for the model. For aerodynamic models this includes the describing functions that represent 
the forces and moments on the airplane. The same is true with engine models whose functions 
represent the thrust and fuel consumption. Once these functions are designed, the standard provides 
the ability to include the provenance regarding each function as part of the data. This is critically 
important in the development of a model. Where did this data come from? What is its intended use? 
What is the configuration of the aircraft for this data? This is all critical information provided by the 
standard that is not typically available in other data table representations. 

While the technical benefits of the standard are clear, probably the greatest benefit of widespread use 
of the standard is that the models will be more accessible and will improve the collaboration between 
facilities and developers. This collaboration will increase and make models better, lowering the cost 
of development of a new simulation. 

Initial simulator development - Code 
When coding a new model the standard is a great benefit if the convention for variable naming is 
followed. Key to the variable naming is the tying of the axis system, measurement units, and 
designation of states to the variable.  

Starting with the latter, the standard variable naming convention designates which variables are states, 
state derivatives, or (optionally) controls. The dynamics of the simulation, which are clearly the 
hardest aspects of an aircraft model to match to criteria data, are all controlled by the states and state 
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derivatives. Using a standard naming convention makes it easy to track which variable are “key” in 
the simulation. 

While initially controversial, the standard variable naming convention uses units as a suffix. Initially 
developers complained about this due to the additional typing that was required. However as they 
used this feature the complaints dissolved, as it reduced mistakes caused by mixing of improper units. 

Initial simulator development - Test 
At its present level of development the standard supports the automated ability to check the mapping 
between model inputs and outputs. This is by itself a valuable capability. It also provides, for certain 
check cases, the sharing of internal or intermediate variable values for debugging purposes.  

Initial simulator development - Verification 
The authors define verification as assuring that the model is performing as designed. The authors 
define validation as assuring that the model realistically represents the vehicle it is simulating.  

The standard helps simplify the verification process by standardizing the import and export process, 
reducing the probability of make a mistake in the importing of new model data. Also the capability to 
include static check data is a valuable verification check. However, the standard has no method to 
ensure that the function data table, while imported accurately, represents the aircraft or weapon 
system in question; it only helps reduce the probability that a mistake was made in implementing said 
data. Future versions of the standard will include the ability to exchange time history data for the 
purpose of dynamic verification of the model after the implementation. 

Life Cycle Support - Software Maintenance 
The biggest problem with software maintenance is that it is often performed years after the 
development of the simulation when the original developers are no longer available. The new 
maintainers must unravel the code to understand properly how to make a modification or 
improvement. The aforementioned variable naming convention dramatically simplifies this by 
identifying the states, state derivatives, controls and the units of the variables. States and state 
derivatives are the key variables that determine the dynamics of the model. The units in the variable 
name help the self-documenting features of the code and help prevent making a modification using 
the wrong units. These two simple conventions will simplify maintenance and should be quickly 
accepted by maintainers. 

Often maintenance is required to update the simulation model's function tables to reflect changes to 
the model, such as extending the flight envelope that the simulation can represent or updating the 
engine tables to reflect upgraded engines installed in the airplane. The use of a standard function table 
representation makes incorporation of these new tables almost trivial. 

Life Cycle Support - Updates / Technology Refresh 
While the standard itself does not aid in upgrading the computers or upgrading the software language 
(two typical examples of technology refresh), the use of a standard can simplify this process. No one 
can predict what the future will bring, but the more standardization used in the development of a 
simulator, the greater the likelihood that there will be tools to help implement the model in the next 
level of technology (computer hardware and software). In other words, the more unique the software 
is, the harder it is to adopt new technology. The more standardized a system is, the easier it is to keep 
technology current because there will be a larger community of practicioners working with these tools 
and supporting the standard. This is a significant advantage when trying to update the hardware and 
software of the simulator. 

Key Benefit: Improved Model Fidelity/Transfer of Training 
The above are primarily cost and schedule benefits. Perhaps the biggest technical benefit of the 
standard is that improved collaboration between all the different types of simulations results in an 
improved math model on the trainer. For example, one facility may be concentrating on high angle-
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of-attack and have developed an improved high angle-of-attack database. Others may have found an 
error in the flaps-down approach-to-land database. Another simulation may be developing engine or 
stores models and have improved the engine tables or the aerodynamic effects of stores, etc. With the 
barriers to data transfers that exist now it is rare that these improvements get widely distributed. The 
application of a standard significantly reduces or eliminates these barriers and will allow all these 
improvements to be more easily distributed throughout the simulation community with little cost or 
effort. Therefore the simulation will now have a larger flight envelope with improved utility and 
better fidelity.  

Cost Benefit 
Those familiar with the translation of models from one simulation architecture to another can easily 
appreciate the potential for savings created by this standard. The authors of this paper earlier 
estimated (see reference 1) an annual potential savings of $6.8M (USD) in a case study of simulators 
for one military aircraft. This case study included 59 simulators (now well over 100 for this one 
aircraft model). Thirty of the 59 simulations were pilot training simulations, the rest were RDT&E or 
aircraft manufacturer simulations. This paper also claims that the biggest potential benefit is from 
increased collaboration between the people working on the different simulations. It is difficult to 
quantify the true gains in time and money, but the authors take the position that the leverage of 
improved collaboration is huge. A small gain in collaboration results in a great benefit to the 
simulation community. 

Example DAVE-ML models 
Some examples of the ability of the DAVE-ML grammar to depict aspects of typical engineering 
flight simulation aerodynamic models are shown below; more examples can be found on the DAVE-
ML website (http://daveml.nasa.gov/examples.html). 

Minimal one-dimensional table 
The example below is the minimal realization of the single, one-dimensional representation of a lift 
coefficient vs. angle-of-attack relationship. This is a valid DAVE-ML model, but it doesn't include 
desirable information about the source, purpose, or any modifications (typical of many legacy 
models). Figure 2 depicts the information contained in the example. 
<?xml version="1.0" standalone="no"?> 
<!DOCTYPE DAVEfunc  
  PUBLIC "-//NASA//DTD for Flight Dynamic  
  Models - Functions 2.0//EN"  
  "DAVEfunc.dtd"> 
<DAVEfunc> 
  <fileHeader> 
    <author name="Bruce Jackson" 
            org="NASA"/> 
    <creationDate date="2002-03-11"/> 
  </fileHeader> 
  <variableDef name="alpha" varID="alpdeg"  
               units="deg"/> 
  <variableDef name="CL" varID="cl"  
               units=""/> 
  <function name="CL"> 
    <independentVarPts varID="alpdeg"> 
      -4.0,0.,4.0,8.0,12.0,16.0 
    </independentVarPts> 
    <dependentVarPts varID="cl"> 
      0.0,0.2,0.4,0.8,1.0,1.2 
    </dependentVarPts> 
  </function> 
</DAVEfunc> 

 
Figure 2. Depiction of the one-dimensional 

function found in the first two examples 

A more complete one-dimensional table 
A more realistic encoding of the same lift coefficient vs. angle-of-attack function, depicted in figure 2, 
is given below. This implementation contains more useful information about the model including a 
description and the modification history. While whitespace is optional for most XML grammars, 
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human readability warrants judicious use of comments and whitespace. This example is not really a 
useful aerodynamic model since it only describes one function; most models will contain dozens if 
not hundreds, of functions as well as verification data, buildup equations and uncertainty distributions. 
<?xml version="1.0" standalone="no"?> 
<!DOCTYPE DAVEfunc PUBLIC  
          "-//NASA//DTD for Flight Dynamic Models - Functions 2.0//EN" "DAVEfunc.dtd"> 
<DAVEfunc> 
  <fileHeader> 
    <author name="Bruce Jackson" org="NASA Langley Research Center" 
            email="e.b.jackson@nasa.gov"/> 
    <creationDate date="2002-03-11"/> 
    <fileVersion>$Revision: 286 $</fileVersion><description> 
 Coefficient of lift (non-dimensional) versus angle-of-attack, deg. 
 Example file for DAVE function table format. This example is the simplest version. 
    </description> 
    <modificationRecord modID="A" date="2002-03-11"> 
      <author name="Bruce Jackson" org="NASA Langley Research Center" 
              email="e.b.jackson@nasa.gov"/> 
      <description> 
        Added varID to dependentVarPts and independentVarPts, per DTD 1.5b2 change. 
        Also changed author's xns address to e-mail address. 
      </description> 
    </modificationRecord> 
    <modificationRecord modID="B" date="2006-11-17"> 
      <author name="Bruce Jackson" org="NASA Langley Research Center"  
              email="e.b.jackson@nasa.gov"/> 
      <description> 
        Added date to modificationRecord per DTD 1.9 change. 
      </description> 
    </modificationRecord> 
  </fileHeader> 
  <variableDef name="alpha" varID="alpdeg" units="deg"/> 
  <variableDef name="CL" varID="cl" units=""/> 
  <function name="CL"> 
    <independentVarPts varID="alpdeg"> 
      -4.0, 0., 4.0, 8.0, 12.0, 16.0 
    </independentVarPts> 
    <dependentVarPts varID="cl"> 
      0.0, 0.2, 0.4, 0.8, 1.0, 1.2 
    </dependentVarPts> 
  </function> 
</DAVEfunc> 

A more complex aero model with a two-dimensional function 
The example shown below begins to approach a useful, albeit fictional, model. It describes an 
aerodynamic model composed of a single two-dimensional coefficient of lift as a function of angle-of-
attack and Mach number; as is more typical of higher fidelity models, the set of independent values 
for the orthogonal table are declared separately for potential reuse with other similar-dimensioned 
tables (although this example doesn't demonstrate table reuse). 
<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<!DOCTYPE DAVEfunc  
          PUBLIC "-//NASA//DTD for Flight Dynamic Models - Functions 2.0//EN"  
          "DAVEfunc.dtd"> 
<DAVEfunc> 
  <fileHeader> 
    <author name="Bruce Jackson" org="NASA Langley Research Center" 
            email="e.b.jackson@nasa.gov"/> 
    <creationDate date="2002-03-01"/> 
    <fileVersion>$Revision: 287 $</fileVersion>   
    <description> Coefficient of lift (non-dimensional) - single two-dimensional table. 
      Example file for depiction of typical DAVE function table format.  
      This example is more complex.  
    </description> 
 
    <reference refID="REF01" author="Raney, David L." title="F-19A Basic Aerodynamics Model" 
      accession="NASA TM-4302" date="1992-07-31"/> 
    <reference refID="REF02" author="Buggati, Richard W."  
      title="F-19A Rotary Aerodynamics Model" 
      accession="NASA TM-4303" date="1993-07-31" 
      xlink:href="http://dcb.larc.nasa.gov/models/tm4303.pdf"/> 
    <reference refID="REF03" author="Aviation Leak &amp; Space Tautology" 
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      title="F-19A Falling Short on Design Performance Numbers"  
      accession="Vol. 45, Number 12" 
      date="1993-07-03"/> 
 
    <modificationRecord modID="A" refID="REF03" date="2002-03-01"> 
      <author name="Hildrup, Bruce L." org="SAID Patuxent River"> 
        <address> 
          1087 Exploration Parkway Ste 201 
          Lexington Park, MD 20654 
        </address> 
      </author> 
      <description> Reversed sign on drag term for better performance! </description> 
    </modificationRecord> 
 
    <modificationRecord modID="B" date="2006-11-16"> 
      <author name="Bruce Jackson" org="NASA Langley Research Center"  
              email="bruce.jackson@nasa.gov"> 
        <address> 
          MS308 NASA 
          Hampton VA 23681 USA 
        </address> 
      </author> 
      <description>  
        Renamed from .xml to .dml; changed to conform to DAVEfunc.dtd 1.9: added 'date' 
        to modification record, renamed docID attribute in documentRefs to refID;  
        corrected date formats to ISO; added fileVersion element with  
        Revision keyword. 
      </description> 
    </modificationRecord> 
 
    <modificationRecord modID="C" date="2008-02-27"> 
      <author name="Bruce Jackson" org="NASA Langley Research Center" 
              email="bruce.jackson@nasa.gov"> 
        <address> 
          MS308 NASA 
          Hampton VA 23681 USA 
        </address> 
      </author> 
      <description> 
        Updated to 2.0 (fileCreationDate + functionCreationDate -> creationDate); 
        updated email address 
      </description> 
    </modificationRecord> 
 
</fileHeader> 
 
  <!-- ================== --> 
  <!--  Input variables   --> 
  <!-- ================== --> 
 
  <variableDef name="angleOfAttach_d" varID="ALPHA" units="deg" symbol="#x3B1"> 
    <description> Instantaneous true angle-of-attack, in degrees </description> 
    <isStdAIAA/> <!-- this is a standard AIAA simulation variable --> 
  </variableDef> 
 
  <variableDef name="MachNumber" varID="MACH" units="ND" symbol="M"> 
    <isStdAIAA/> <!-- this is a standard AIAA simulation variable --> 
  </variableDef> 
 
  <!-- ================== --> 
  <!--  Output variable   --> 
  <!-- ================== --> 
 
  <variableDef name="CL" varID="CL" units="ND" symbol="CL"> 
    <description> Coefficient of lift based on alpha and mach. </description> 
  </variableDef> 
 
  <!-- ================== --> 
  <!--  Breakpoint values --> 
  <!-- ================== --> 
 
  <breakpointDef name="alpha_bp" bpID="ALPHA1" units="deg"> 
    <description> Alpha breakpoints for most basic aero data </description> 
    <bpVals> -4.0, 0., 4.0, 8.0, 12.0, 16.0 </bpVals> 
  </breakpointDef> 
 
  <breakpointDef name="mach_bp" bpID="MACH1" units="ND"> 



  10 

    <bpVals> 0.0, 0.4, 0.8, 0.9, 0.95, 0.99, 1.00, 1.01, 1.05, 1.2 </bpVals> 
  </breakpointDef> 
 
  <!-- ================== --> 
  <!--      Functions     --> 
  <!-- ================== --> 
 
  <function name="Basic CL"> 
    <description> Basic coefficient of lift table as a function of Mach and angle of attack 
</description> 
    <provenance> 
      <author name="Bruce Jackson" org="NASA Langley Research Center" xns="@bjax"/> 
      <creationDate date="Jul-1994"/> 
      <documentRef refID="REF01"/> 
      <documentRef refID="REF02"/> 
      <modificationRef modID="A"/> 
    </provenance> 
    <independentVarRef varID="MACH" min="0.3" max="0.95" extrapolate="max"/> 
    <!-- Mach breakpoints --> 
    <independentVarRef varID="ALPHA" min="-0.4" max="16.0" extrapolate="both"/> 
    <!-- Alpha breakpoints --> 
    <dependentVarRef varID="CL"/> 
    <functionDefn name="CL_FN"> 
      <griddedTable name="CL_TABLE"> 
        <breakpointRefs> 
          <bpRef bpID="MACH1"/> 
          <bpRef bpID="ALPHA1"/> 
        </breakpointRefs> 
        <dataTable> 
          <!-- Note: last breakpoint (ALPHA1) changes most rapidly -->  
 <!-- -4.0,        0.,      4.0,      8.0,       12.0,      16.0      alpha values  --> 
   9.5013e-01 6.1543e-01 5.7891e-02 1.5274e-02 8.3812e-01 1.9343e-01 <!-- Mach 0.0  --> 
   2.3114e-01 7.9194e-01 3.5287e-01 7.4679e-01 1.9640e-02 6.8222e-01 <!-- Mach 0.4  --> 
   6.0684e-01 9.2181e-01 8.1317e-01 4.4510e-01 6.8128e-01 3.0276e-01 <!-- Mach 0.8  --> 
   4.8598e-01 7.3821e-01 9.8613e-03 9.3181e-01 3.7948e-01 5.4167e-01 <!-- Mach 0.9  --> 
   8.9130e-01 1.7627e-01 1.3889e-01 4.6599e-01 8.3180e-01 1.5087e-01 <!-- Mach 0.95 --> 
   7.6210e-01 4.0571e-01 2.0277e-01 4.1865e-01 5.0281e-01 6.9790e-01 <!-- Mach 0.99 --> 
   4.5647e-01 9.3547e-01 1.9872e-01 8.4622e-01 7.0947e-01 3.7837e-01 <!-- Mach 1.00 --> 
   1.8504e-02 9.1690e-01 6.0379e-01 5.2515e-01 4.2889e-01 8.6001e-01 <!-- Mach 1.01 --> 
   8.2141e-01 4.1027e-01 2.7219e-01 2.0265e-01 3.0462e-01 8.5366e-01 <!-- Mach 1.05 --> 
   4.4470e-01 8.9365e-01 1.9881e-01 6.7214e-01 1.8965e-01 5.9356e-01 <!-- Mach 1.2  --> 
        </dataTable> 
      </griddedTable> 
    </functionDefn> 
  </function> 
</DAVEfunc> 
 

An excerpt showing build-up calculations 
The example shown here is an excerpt from the HL-20 lifting body aerodynamic model, available 
from the DAVE-ML website6. It depicts the use of MathML-2 markup to describe how the outputs 
from various function descriptions (not shown) are combined through powers of angle-of-attack to 
form the lift coefficient contribution of the lower-left body flap.  

This excerpt demonstrates the encoding of the equation 
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Note that in this excerpt, the variables identified as ALP, CLBFLL0, CLBFLL1, CLBFLL2, and 
CLBFLL3 have been defined elsewhere (ALP is angle of attack and is an input to the model; the other 
variables are outputs from multidimension function tables that are not shown). 

This excerpt gives some indication of the method of describing aerodynamic buildup equations in a 
DAVE-ML model file. 
 
<!--    lower left body flap lift buildup -->  
  <variableDef name="CLdbfll" varID="CLBFLL" units="">  
    <description>  
        Lift contribution of lower left body flap deflection  

                                                        
6http://daveml.nasa.gov 
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        CLdbfll = CLdbfll_0 + alpha*(CLdbfll_1 + alpha*(CLdbfll_2  
                            + alpha*CLdbfll_3))  
    </description>  
    <calculation> 
      <math>  
        <apply>   
        <plus/>  
          <ci>CLBFLL0</ci>  
          <apply>  
            <times/>  
            <ci>ALP</ci>  
            <apply>  
              <plus/>  
              <ci>CLBFLL1</ci>  
              <apply>  
                <times/>  
                <ci>ALP</ci>  
                <apply>  
                  <plus/>  
                  <ci>CLBFLL2</ci>  
                  <apply> 
                    <times/>  
                    <ci>ALP</ci>  
                    <ci>CLBFLL3</ci>  
                  </apply> <!--            a*c3   -->  
                </apply> <!--        (c2 + a*c3)  -->  
              </apply> <!--        a*(c2 + a*c3)  -->  
            </apply> <!--    (c1 + a*(c2 + a*c3)) -->  
          </apply> <!--    a*(c1 + a*(c2 + a*c3)) -->  
        </apply> <!-- c0 + a*(c1 + a*(c2 + a*c3)) -->  
      </math>  
    </calculation>  
  </variableDef>  
 
 

Project Status 

Status of the draft Standard 
As of this writing (April 2008) the standard is in final editing by the American Institute of 
Aeronautics and Astronautics (AIAA), the largest aerospace professional society in the United States. 
It is being prepared as an American National Standards Institute (ANSI) standard by the Modeling 
and Simulation Technical Committee (MSTC) of the AIAA. After ANSI acceptance the DAVE-ML 
standard is planned to be submitted for consideration as an International Organization for 
Standardization (ISO) standard.  

The “ANSI Flight Dynamic Model Exchange Standard, DAVE-ML”  (the current working title) 
includes: 

• Standard function table definition and convention 

• Standard variable name definitions and convention 

• Standard axis system definitions  

• Standard static math equation representation. 

• A reference manual, with examples, for the DAVE-ML grammar. 

Existing Tools 
With the release of early DAVE-ML specifications, some preliminary tools to assist in using and 
importing DAVE-ML compliant simulation models have emerged. An up-to-date listing is presently 
available at the DAVE-ML website, http://daveml.nasa.gov/tools.html. At the time of this writing 
(April 2008) these include: 
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DAVEtools 
This Java-based toolset provides two features at present: an interactive DAVE-ML model evaluation 
capability, and a means to realize a DAVE-ML model as a Simulink® block diagrams with support 
for most DAVE-ML functions. This tool is available from the DAVE-ML website7 under the NASA 
Open Source software license. 

Janus 
This C++ library was developed by Australia's Defence Science and Technology Organisation 
(DSTO)8. It provides an application programming interface (API) that allows simulations to read and 
execute DAVE-ML models at run-time. It supports most DAVE-ML functions and some DSTO-
unique extensions. It is available under the DSTO Open Source License from DSTO9. 

DaveMLTranslator 
This C++ API was developed for use in NASA Langley Research Center's LaSRS++ real-time 
simulation framework10. It supports some DAVE-ML functions and is available upon written request 
under limited license from NASA Langley11. 

XSLT 
Using an existing XML capability, extensible stylesheet translation technology (XLST), it is possible 
to automatically transform DAVE-ML files into HTML-based documentation. Stylesheets and 
examples can be found at the DAVE-ML website12. 

Future Work  
The next effort is to add a standard method for the exchange of dynamic verification data. Clearly this 
is needed, because after a model is exchanged between simulation facilities, the model must be fully 
verified. Any such exchange should include dynamic verification data. The present markup set only 
supports static (single time slice) verification data. 

The MSTC has tentatively decided to adopt and tailor an “apparent” emerging flight test time history 
standard. This is a standard made for the Joint Strike Fighter (F-35) program. The simulation 
exchange standard would be a subset of the flight test data standard. It is implemented in Hierarchical 
Data Format 5 (HDF 5). HDF is a publically released architecture for storing large amounts of data of 
all types. Flight simulation applications are relatively simple compared to the capabilities of available 
HDF tools and products. HDF was started by the National Center for Supercomputing Applications 
and the University of Illinois at Urbana-Champaign13. It was not included in the present standard 
because of the difficulty of obtaining public release of specific flight-test related tools that should 
greatly facilitate the use HDF 5 in flight simulation applications. It is hoped that these issues will be 
shortly overcome and the next iteration of the standard will support exchange of dynamic validation 
and verification data. 

After this minor hurdle is overcome, a more difficult task looms. How do we standardize on modeling 
dynamic systems? The proposed standard is limited to static systems, that is, models that are stateless. 
Additional syntax is needed to address initialization and integration methods, if dynamics are to be 
added to the standard. Control systems and engine models are the most obvious examples of dynamic 
models that need to be exchanged between simulation facilities.  

                                                        
7 http://daveml.nasa.gov/DAVEtools.html 
8 Brian, Young, Newman, Curtin and Keating: The Quest for a Unified Aircraft Dataset Format. SIAA paper, August 
2005 
9 http://www.dsto.defence.gov.au/research/4675 
10 Hill, Melissa A. and Jackson, E. Bruce: The DaveMLTranslator: An Interface for DAVE-ML Aerodynamic Models. 
AIAA Paper 2007-6890. 
11 mailto:bruce.jackson@nasa.gov 
12http://daveml.nasa.gov/examples.html 
13 http://hdf.ncsa.uiuc.edu/HDF5/index.html 
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Ongoing discussions within the simulation standards community14 indicate a desire to add matrix and 
vector definitions to the current DAVE-ML markup grammar. Initial proposals for this capability are 
presently being evaluated for inclusion into later versions of DAVE-ML. 

Simulink®, by the The Mathworks, Inc., is a widely used tool in simulation of diverse dynamic 
systems. In standardizing the exchange of dynamic system models, the MSTC is considering whether 
this commercial product is the equivalent of a de-facto standard. Why create something that already 
exists and has wide acceptance? If DAVE-ML were to include dynamic systems as part of its 
repertoire, it might represent a non-proprietary encoding that captures some of the information 
contained in Simulink models. Informal discussions on this topic have taken place and will continue. 

Summary 
The current draft AIAA Standard for flight simulation models represents an on-going effort to 
improve the productivity of practitioners of the art of digital flight simulation (one of the original 
digital computer applications). This initial release provides the capability for the efficient 
representation and exchange of an aerodynamic model in full fidelity; the DAVE-ML format can be 
easily imported (with development of site-specific import tools) in an unambiguous way with 
automatic verification. An attractive feature of the standard is the ability to coexist with existing 
legacy software or tools. 

The draft Standard is currently limited in scope to static elements of dynamic flight simulations; 
however, these static elements represent the bulk of typical flight simulation mathematical models. It 
is already seeing application within U.S. and Australian government agencies in an effort to improve 
productivity and reduce model rehosting overhead. An existing tool allows import of DAVE-ML 
models into a popular simulation modeling and analysis tool, and other community-contributed tools 
and libraries can simplify the use of DAVE-ML compliant models at compile- or run-time of high-
fidelity flight simulation. 

                                                        
14 mailto:simstds@larc.nasa.gov 


