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It can take weeks or months to incorporate a new aerodynamic model into a vehicle 
simulation and validate the performance of the model. The Dynamic Aerospace Vehicle 
Exchange Markup Language (DAVE-ML) has been proposed as a means to reduce the time 
required to accomplish this task by defining a standard format for typical components of a 
flight dynamic model. The purpose of this paper is to describe an object-oriented C++ 
implementation of a class that interfaces a vehicle subsystem model specified in DAVE-ML 
and a vehicle simulation. Using the DaveMLTranslator class, aerodynamic or other 
subsystem models can be automatically imported and verified at run-time, significantly 
reducing the elapsed time between receipt of a DAVE-ML model and its integration into a 
simulation environment. The translator performs variable initializations, data table lookups, 
and mathematical calculations for the aerodynamic build-up, and executes any embedded 
static check-cases for verification. The implementation is efficient, enabling real-time 
execution. Simple  interface code for the model inputs and outputs is the only requirement to 
integrate the DaveMLTranslator as a vehicle aerodynamic model. The translator makes use 
of existing table-lookup utilities from the Langley Standard Real-Time Simulation in C++ 
(LaSRS++). The design and operation of the translator class is described and comparisons 
with existing, conventional, C++ aerodynamic models of the same vehicle are given. 

Nomenclature 
 α  angle of attack, degrees 
 β  angle of sideslip, degrees 
 φ  roll attitude angle, degrees 
 θ  pitch attitude angle, degrees 
 ϕ  yaw attitude angle, degrees 

I. Introduction 
t can take weeks or months to incorporate a new aerodynamic model into a vehicle simulation and validate the 
performance of the model. The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) has been 

proposed as a means to reduce the time required to accomplish this task by defining a standard format for typical 
components of a flight dynamic model. The purpose of this paper is to describe an object-oriented C++ 
implementation of a class that interfaces a vehicle subsystem model specified in DAVE-ML and a vehicle 
simulation. Using the DaveMLTranslator class, aerodynamic or other static subsystem models can be automatically 
imported and verified at run-time, significantly reducing the elapsed time between receipt of a DAVE-ML model 
and its integration into a simulation environment. The translator performs variable initializations, data table lookups, 
and mathematical calculations for the aerodynamic build-up, and executes any embedded static check-cases for 
verification. A focus on efficiency during the implementation of the translator resulted in the capability to execute in 
real-time. Simple interface code for the model inputs and outputs is the only requirement to integrate the 
DaveMLTranslator as a vehicle aerodynamic model. The translator makes use of existing table-lookup utilities from 
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the Langley Standard Real-Time Simulation in C++ (LaSRS++). The design and operation of the translator class are 
described and comparisons with existing, conventional, C++ aerodynamic models of the same vehicle are given. 

LaSRS++ is a C++-based simulation framework developed by and in use at NASA's Langley Research Center1. 
The framework is used in both non-realtime-desktop and pilot-in-the-loop hard-real-time modes for flight simulation 
studies. LaSRS++ provides a reusable object-oriented environment to support single-vehicle and multiple-vehicle 
aerospace simulations in a variety of motion-base and fixed-base cockpits. Langley uses these facilities to develop 
and analyze crew-vehicle systems interactions, control laws, conventional and revolutionary aerodynamic vehicle 
configurations, and provide pilot and astronaut familiarization capability.  

DAVE-ML is an eXtensible Markup Language (XML)-based grammar for describing simple-to-complex 
aerodynamic models for aerospace vehicles. DAVE-ML describes nonlinear aerodynamic tables and functions of 
unlimited dimensions, uncertainty bounds and functions, build-up equations, data provenance, and embedded check-
case/verification data in a single text file. It has been jointly developed by NASA and the AIAA Modeling and 
Simulation Technical Committee and is being considered for adoption as an AIAA/ANSI standard2,3,4. 

II. Motivation 
The traditional method to re-host a flight dynamic model at Langley involves, at the very least, reformatting 

tabular aerodynamic databases from the original format to the LaSRS++ table source format. Usually the source 
code for the aerodynamic model is structured in a way that it is not compatible with the LaSRS++ framework and 
must be rewritten to some extent, another manual operation. Finally, the check-case data is usually a separate, 
sometimes paper, document, requiring some effort to generate check plots to verify proper reimplementation at the 
Langley facility. A process similar to this takes place each time a dynamic model is shared between simulation 
facilities, and indeed, every time the model is re-hosted into a dynamic analysis tool. 

DAVE-ML was developed to obviate the need for manual processes, which sometimes takes weeks of effort. By 
defining a standard format for typical components of a flight dynamic model, the implementation of externally 
developed models can be done by automated processes. The emergence of XML, MathML (a mathematical 
relationship XML grammar) and UNICODE character encoding standards has provided a means to this end; using 
well-designed parsers makes this automation straightforward and nearly instantaneous. 

III. Description of the Translator 
The DAVE-ML translator class (DaveMLTranslator) loads, at run-time, a DAVE-ML description of an 

aerodynamic model into a LaSRS++ simulation. Any included check-case data sets are verified after the file is 
parsed into memory-resident calculation structures, providing immediate verification of the model implementation, 
before beginning real-time operation. 

Demonstrations of this capability used a subsonic aerodynamic model of the F-16A aircraft as described in the 
paper by Garza and Morelli5, and an aerodynamic model of the HL-20 lifting body. The HL-20 model is a fairly 
complex full-envelope subsonic and supersonic hybrid aerodynamic model‡ that is representative of a high-fidelity 
engineering simulation6. In both cases, the simulation characteristics of the DAVE-ML implementation were 
virtually identical to the traditional aerodynamic models constructed using FORTRAN or C/C++ source files. These 
comparisons were done both quantitatively (time-history comparison matches) and qualitatively (using informal 
piloted evaluations).  

IV. Class Design 

A. LaSRS++ Overview  
In the LaSRS++ framework, the VehicleSystem class interfaces vehicle models with subsystem models to decouple 
the two7,8. In the F-16A, the F16aAeroSystem is the interface between the F16a and the F16aAero classes (Fig. 1). 
The DaveMLTranslator was designed to replace a subsystem model (in this case, F16aAero), so that it can be 
included in any vehicle without disrupting the existing aircraft design. The corresponding VehicleSystem, (in this 
case the F16aAeroSystem) must be modified to interface with the DaveMLTranslator.  
 The design of the DaveMLTranslator class had the following requirements: 

1. Implement the DaveMLTranslator to be independent of the vehicle model. 
2. Automatically import and verify the subsystem model at run-time. 
3. During import, identify and resolve order dependencies in the subsystem model. 
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4. Maximize the efficiency of the translator to enable real-time execution (at 50 Hz). 
5. Use a generic interface so that the DaveMLTranslator can be used for any subsystem model specified in the 

DAVE-ML grammar. 

 
 
 The DaveMLTranslator was designed as a stand-alone class, relying only on an existing library for performing 
data table lookups, and a new library implemented to handle the Mathematical Markup Language (MathML) 
elements of DAVE-ML. Neither the table lookup library nor the MathML library depends on the vehicle model, 
making the combination of the DaveMLTranslator and the libraries independent of the vehicle model to which the 
DAVE-ML model applies, satisfying requirement 1. 
 To minimize execution time during simulation operations, the bulk of the work in the DaveMLTranslator class is 
performed in the constructor, a member method that initializes the object. The DAVE-ML model, specified in plain 
text format, is parsed one time, completing costly string comparisons and file parsing during the load time of the 
simulation models, when real-time execution is not yet critical. The following steps are implemented in the 
DaveMLTranslator constructor: 

1. Loading the DAVE-ML model from the text file and validating the model format 
2. Handling elements specific to the DAVE-ML grammar 
3. Resolving order dependencies in the model 
4. Executing model check-cases 

B. Loading and Validating the DAVE-ML Model 
The XML Document Object Model (DOM) represents an XML document as a tree, with elements forming the nodes 
of the tree. The DOM provides a standard way of accessing and manipulating XML documents. Various XML 
parsing libraries have methods to facilitate traversing the document tree and pulling information from the element 
nodes. For the DaveMLTranslator, libxml29, the XML C Parser and Toolkit of Gnome, was chosen. libxml2 
provides the ability to parse the document and validate it against a Document Type Definition (DTD). The 
validation ensures that the model is well formed according to the grammar. Parsing of the DAVE-ML model into a 
node tree and validation of the DAVE-ML model is completed with two function calls to the libxml2 library. The 
calls return a pointer to the root node of the newly created document tree. If the DAVE-ML model is not valid 
according to the DTD, the program exits with an error message. 

C. Element Handling 
Once the node tree has been created, preorder traversal is performed, starting from the root node (a DAVEFunc 

element). Element “handler” methods are called for each child node. The handler methods are specific to DAVE-
ML elements, and they implement functionality based on the element definition in the DAVE-ML DTD. The 
execution of handler methods for each node proceeds until a leaf is reached, at which point control moves to the next 
sibling node in the tree. Once the traversal is complete, the DAVE-ML model has been imported, satisfying the first 
part of requirement 2. 

During traversal of the tree nodes, C++ structures are used to store information about DAVE-ML elements. The 
structures loosely map to the DAVE-ML elements, though there is some overlap where multiple element types are 

VehicleSystem

SimulationModel

AeroAeroSystemAircraft

F16a F16aAeroF16aAeroSystem

 
Figure 1. The LaSRS++ VehicleSystem Interface. 
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stored within a single structure. As handler methods are called for each node in the tree, new structures are 
dynamically allocated and populated with the element details. The structure pointers are stored in standard template 
library containers in the DaveMLTranslator. 

The two primary structures are the VariableDef and the Function. These structures correspond to the DAVE-ML 
elements with the same names, and are the only structures that need to be updated during simulation execution; all 
of the other structures used in the DaveMLTranslator class exist as supporting players. The DAVEFuncElement 
structure was created as the base structure for the VariableDef and Function; it contains their common data members 
and methods. Each structure has data members that map to the attributes and sub-elements of the corresponding 
DAVE-ML element. The majority of the data members are intrinsic types; some are DAVE-ML specific structures 
(e.g., IndependentVarRef), and some are object pointers specific to the data table lookup library (e.g., 
DependentVariable) (Fig. 2). 
 

D. Mathematical Markup Language 
A special case in the DAVE-ML grammar is the calculation element, which can be a child element of the 
variableDef. The calculation uses elements defined in the Mathematical Markup Language (MathML) to 
describe equations. To simplify the DaveMLTranslator implementation and to maximize code reuse for future 
applications using MathML, the MathML elements and handlers were designed within a separate class hierarchy. 
MathML is an extensive grammar; for the DaveMLTranslator, only the subset of MathML encountered in the F-16A 
and HL-20 aerodynamic models was implemented (Fig. 3).  

 
Figure 2. The DAVEFuncElement, VariableDef, and Function Structures 
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 MathML uses prefix notation, in which each operator precedes its operands. In prefix notation, the term 

t
Vb 2/   

is expressed as “ )2(*/
t
Vb ”. In the MathML handler method in the DaveMLTranslator, a MathML expression is 

contained within a single instance of a MathMlToken. The first operator is the entry point for the expression; in this 
case it is a MathMlDivide object. All participating operands and operators are instances of the appropriate derivative 
class of MathMlToken, and are pushed onto the operands member of the parent token (e.g., the MathMlDivide 
object), using the putOperand method (Fig. 4). Expressions are evaluated by recursively calling the evaluate method 
for each operator and operand while traversing the operands vectors. The MathMlVariable and MathMlConstant 
classes are the end conditions of the recursion; they return a value rather than returning the result of another call to 
evaluate. 

E. Resolving Order Dependencies  
In the DAVE-ML description of a subsystem model, it is possible to use variables in calculations or function 

table lookups before those variables are defined. If the DaveMLTranslator parsed and evaluated a model exactly as 
it was defined, multiple passes might be required during simulation execution to resolve the dependencies. To 
reduce the per-frame update of a DAVE-ML model to a single pass, a sorting method was implemented. The sort 
method is called once during initialization of the DaveMLTranslator. The DAVE-ML variableDef element can 
only depend on other variables within a calculation, and the function elements depend on independent variables, 

 
Figure 3. The MathML Class Hierarchy 

 

MathMlVariableMathMlDivide +operand[0]

MathMlConstant
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Figure 4. The Expression / b  (* 2 vt) as Implemented with the MathML Class Hierarchy 
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expressed as independentVarRef or independentVarPts elements. The base structure DAVEFuncElement 
has a dependencies vector for storing the unique IDs of the dependencies. 

Dependencies in variableDef elements are stored when the calculation elements are handled. The 
findDependencies method in the Function structure iterates through the list of independent variables, adding them to 
the dependencies vector. Once all of the dependencies have been found, the sort method in the DaveMLTranslator 
iterates through all of the VariableDef and Function structures, checking whether the dependencies precede the 
structure in the standard template library list of DAVEFuncElements to be updated. If they do not, the list is 
reordered to resolve the conflict. In the case where there are circular dependencies that cannot be resolved, an option 
is set in the DaveMLTranslator to perform multiple iterations of the update method during execution. The 
implementation of the sort method satisfies requirement 3, and partially satisfies requirement 4, improving the 
efficiency of the model by reducing the number of passes through the update method during simulation execution. 

F. Updating the Model  
To update a dynamic model in the DaveMLTranslator, the update method is called for each DAVEFuncElement 

structure in the sorted list (i.e., all VariableDefs and Functions). Only the VariableDef structures that contain 
calculations require action; the evaluate method is called on the calculation, and the result is stored in the value data 
member of the VariableDef structure. In the update method for the Function structure, independent variable values 
are set, and a data table lookup is performed. The result is stored in the result data member of the Function structure. 
Once all of the VariableDef and Function structures have been updated, the evaluation of the dynamic model is 
complete. 

G. Running Check-Cases  
In a DAVE-ML model, it is possible to define any number of static check-cases for model verification. The 

staticShot element contains values for check-case inputs and outputs, and optionally for internal variables. The 
StaticShot structure was defined to store the data for each check-case (Fig. 5). When the DAVE-ML model tree is 
traversed, the staticShot elements are parsed and stored in the same manner as the other elements. Once the 
entire model has been parsed and sorted, any check-cases are executed. For each defined check-case, the input 
values are set, the DAVE-ML model is updated, and the resulting internal values and outputs are compared with the 
expected values. Any discrepancies are reported via error messages to the terminal. Once all of the check-cases have 
been executed, the imported model has been verified, satisfying the second part of requirement 2. 

V. Integration with LaSRS++ 
Models specified in the DAVE-ML grammar contain inputs, internal values, and outputs. The interface of the 

DaveMLTranslator was designed so that VehicleSystems using the translator only require access to the inputs and 
outputs for successful execution.  

The DaveMLTranslator has a simple interface with only three public methods: getVariablePointer, initialize, 
and update (Fig. 6). The calling system uses the getVariablePointer method to access inputs to and outputs from the 
DAVE-ML model. The initialize method resets variable values, and the update method executes the dynamic model, 
performing table lookups and evaluating calculations to get the resulting outputs. 

 
Figure 5. The StaticShot structure for DAVE-ML Check-Case Execution 
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To use the translator, the programmer must inspect the DAVE-ML model, and make note of the unique 
identifiers (the DAVE-ML varID attributes) for all of the inputs and outputs; input/output (I/O) variables are 
generally indicated as such by the model author with a comment. In the system that will interface with the translator, 
in this case F16aAeroSystem, the user declares a variable pointer for each input and output. Calls to the 
getVariablePointer method are made once for each input and output, passing the unique identifier for each variable 
as an argument (Fig. 7). The DaveMLTranslator returns a pointer to the internal representation of the input or 
output. Then during each frame of execution, the F16aAeroSystem can set the values of the inputs and get the values 
of the outputs directly from the local pointers, without additional method calls. The programmer of the class 
interfacing with the DaveMLTranslator is responsible for ensuring that the unique identifiers and the units of the 
input variables match what is specified in the DAVE-ML model. With this simple interface, the only model-specific 
details are contained within the interface class (F16aAeroSystem), ensuring that the DaveMLTranslator can be used 
as implemented with any DAVE-ML model, satisfying requirement 5. 

During each iteration of simulation execution, the F16aAeroSystem sets the inputs to the DaveMLTranslator by 
calling accessor methods in the F16a model to retrieve the current vehicle values. The F16aAeroSystem then calls 
the update method in the DaveMLTranslator, and processes its outputs (Fig. 8).  

 

F16aAeroSystem DaveMlTranslator

angle_of_attack = getVariablePointer("alpha")

angle_of_sideslip = getVariablePointer("beta")

vtotal = getVariablePointer("vt")

cx = getVariablePointer("cx")

cy = getVariablePointer("cy")

cz = getVariablePointer("cz")

From F16 DAVE-ML Model:

<variableDef varID="alpha"/>
<variableDef varID="beta"/>
<variableDef varID="vt"/>
...
<variableDef varID="cx">
  <isOutput/>
</variableDef>

<variableDef varID="cy">
  <isOutput/>
</variableDef>

<variableDef varID="cz">
  <isOutput/>
</variableDef>

 
 

Figure 7. The DaveMLTranslator Interface for Accessing Model Inputs and Outputs 
 

 
Figure 6. The public interface of the DaveMLTranslator 
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VI. Time History Comparisons 
The performance of the DaveMLTranslator as a vehicle dynamic model was evaluated by comparing it with the 

existing hand-coded C++ implementations for the F-16A and the HL-20 vehicles at NASA’s Langley Research 
Center. The vehicle simulation was executed in a non-real-time desktop mode, with a graphical user interface 
providing displays and a cockpit interface. A mathematical pilot was used to execute sequential doublets in the 
pitch, roll, and yaw axes. In both the F-16A (Fig. 9, 10) and the HL-20 (Fig. 11, 12), the aerodynamic model 
executed with the DaveMLTranslator compares favorably with the original, compiled C++ aerodynamic models. 

Figure 10 shows some small (on the order of 1%) differences in the vehicle state variables; this is due to small 
differences in the two aerodynamic models. The LaSRS++ and DAVE-ML F-16 aerodynamic models share the 
same wind tunnel data but were coded independently by different parties: the LaSRS++ model was coded in C++ 
based on an earlier FORTRAN model; the DAVE-ML F-16 model was based on a Matlab realization of the same 
wind tunnel data by Garza and Morelli5. 

Figure 12 shows virtually no difference between the LaSRS++ and DAVE-ML realizations of the HL-20 aero 
model; these were both based on the same set of build-up equations and data tables found in reference 6. The HL-20 
model is a very non-linear model based primarily on third-order polynomial fits to wind tunnel data, where the 
coefficients of the polynomials are from linearly interpolated tables as a function of flight condition. Thus, the 
DAVE-ML representation shows the capability to model fairly complex aerodynamic relationships. 
 

 

F16aAeroSystem DaveMlTranslatorF16a

*angle_of_attack = getAngleOfAttack()

*angle_of_sideslip = getAngleOfSideslip()

*vtotal = getVTotal()

update()

 
Figure 8. The DaveMLTranslator Interface during Simulation Execution 

 



 
American Institute of Aeronautics and Astronautics 

 

9 

 

 
Figure 9. F-16A Time History Comparison with Compiled C++ and DAVE-ML Aerodynamic Models 
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Figure 10. F-16A Time-History Deltas with Compiled C++ and DAVE-ML Aerodynamic Models 
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Figure 11. HL-20 Time History Comparison with Compiled C++ and DAVE-ML Aerodynamic Models 
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Figure 12. HL-20 Time History Deltas with Compiled C++ and DAVE-ML Aerodynamic Models 
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VII. Piloted Evaluation – F-16A and HL-20 
 An informal piloted evaluation of the DaveMLTranslator was conducted in the Generic Flight Deck (GFD) 

cockpit at NASA Langley Research Center. The F-16A and the HL-20 were flown using DAVE-ML aerodynamic 
models, loaded at run-time. The DAVE-ML models executed successfully within a real-time frame of 20 
milliseconds (50 Hz), and were modified and re-loaded for subsequent runs to exercise the automatic loading 
capabilities of the DaveMLTranslator. Both vehicles performed as expected, and received favorable comments from 
the evaluation pilot who could not detect any qualitative difference between the compiled and interpreted models.  

VIII. Execution Speed Comparisons 
Table 1 shows timing data for the F-16A and HL-20 vehicles using compiled C++ aerodynamic models and 

DAVE-ML aerodynamic models. The data were obtained on an SGI Origin 300 platform running the IRIX 6.5 
operating system. Execution of interpreted DAVE-ML models instead of compiled C++ models increases the 
computational time by 5 to 75%, depending on model complexity.   

IX. Conclusion 
The DaveMLTranslator was successfully implemented in the C++ programming language to automatically 

import and verify, at run-time, vehicle subsystem models specified in the DAVE-ML grammar of XML. The 
capability to import such models at run-time facilitates the comparison of multiple model variations, as well as 
reducing the time to modify the model and evaluate the effects. The translator uses a simple, generic interface, 
enabling its use for multiple models within a single simulation, and greatly reducing the elapsed time between 
delivery of a subsystem model and the integration of that model into a simulation environment. The 
DaveMLTranslator and its supporting libraries are independent of the LaSRS++ simulation framework, and may 
potentially be exported and integrated into any simulation framework capable of working with C++ components. As 
a result, the development of this capability has the potential to positively affect any future project that uses DAVE-
ML to define subsystem models. 
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Table 1. Timing Data for Compiled C++ and DAVE-ML Aerodynamic Models 
 Frame Time Used, milliseconds 
 Minimum Mean Maximum 

F-16A Compiled C++ 0.225 0.234 0.248 
F-16A DAVE-ML 0.236 0.245 0.266 
HL-20 Compiled C++ 0.223 0.231 0.301 
HL-20 DAVE-ML 0.392 0.402 0.472 
 


