
Progress Toward a Format Standard for Flight Dynamics Models
E. Bruce Jackson

NASA Langley Research Center
Dynamic Systems and Control Branch, MS308

Hampton, Virginia 23681
757-864-4060

e.b.jackson@nasa.gov

Bruce L. Hildreth
SAIC

22299 Exploration Drive, Suite 200
Lexington Park, Maryland 20653

301-863-5077
bruce.hildreth@saic.com

ABSTRACT: In the beginning, there was FORTRAN, and it was... not so good. But it was universal, and all flight
simulator equations of motion were coded with it. Then came ACSL, C, Ada, C++, C#, Java, FORTRAN-90,
Matlab/Simulink, and a number of other programming languages. Since the halcyon punch card days of 1968, models
of aircraft flight dynamics have proliferated in training devices, desktop engineering and development computers, and
control design textbooks. With the rise of industry teaming and increased reliance on simulation for procurement
decisions, aircraft and missile simulation models are created, updated, and exchanged with increasing frequency.
However, there is no real lingua franca to facilitate the exchange of models from one simulation user to another. The
current state-of-the-art is such that several staff-months if not staff-years are required to 'rehost' each release of a flight
dynamics model from one simulation environment to another one. If a standard data package or exchange format were
to be universally adopted, the cost and time of sharing and updating aerodynamics, control laws, mass and inertia, and
other flight dynamic components of the equations of motion of an aircraft or spacecraft simulation could be drastically
reduced. A 2002 paper estimated over $ 6 million in savings could be realized for one military aircraft type alone. This
paper describes the efforts of the American Institute of Aeronautics and Astronautics (AIAA) to develop a standard
flight dynamic model exchange standard based on XML and HDF-5 data formats.

1. Introduction
This paper focuses on work that members of the
American Institute of Aeronautics and Astronautics
(AIAA) have performed to develop standards on flight
simulation models. The AIAA is the largest aerospace
engineering professional society [1]. It consists of
approximately 31,000 aerospace professionals throughout
the United States and the world. As part of the AIAA
there are many standing technical committees and this
paper report on work performed by the Modeling and
Simulation Technical Committee.

Specifically, this standard is focused on dynamic models,
those models and functions that make the simulation fly
like an airplane. However the work reported here has
some application to all models, specifically in the format
of function tables and time history data created by
simulation or test instrumentation. For the purpose of this
paper, a flight dynamics model will be defined as those
simulation model components that change when you
change a simulation from one aircraft type to another.

This is typically the aerodynamics, engine, mass and
inertia, and ground reactions. This standard does not
presently address controls, electrical and hydraulic
systems, and avionics. Standardizing the exchange of
those model components is planned for the future.

As any standards organization understands, a standard
cannot just be “thrown out” into the community but needs
to be socialized, tested and optimized to the user
community’s requirements. The purpose of socialization
is to explain its applications and use to the community,
get feedback from the community on how to make it most
effective, coordinate with other standards activities, and
help create the user base which will make the
standardization worth while. It is to this end that this
paper has been generated for the Simulation
Interoperability and Standards Organization (SISO). The
AIAA has communicated with various personnel
associated with SISO to verify that SISO is not working
in a parallel path. Hopefully readers of this paper will
agree and take this opportunity to learn about and provide
feedback on this standard.

Furthermore, in addition to soliciting SISO members for
their ideas and feedback, the AIAA would like to solicit
SISO endorsement of the standard. SISO in general
develops IEEE standards. AIAA is an ANSI standard
member. Further investigation will be required to see if a
standard developed by one standards organization (ANSI
in this case) can be tolerated by another standards
organization (IEEE). Hopefully we can all work together
to accept and improve the standard, consequently
increasing the potential to improve productivity
throughout our industry.

1.1 Goal: A Standard for the Exchange of Flight
Dynamics Models

The goal of the standard is to dramatically facilitate the
process of exchanging a model of an aircraft from one
simulation facility to another. The benefit to the aerospace
community will be the potential for a significant
improvement in collaboration within the simulation
community of a specific aircraft type, an F-16 model type,
for example.

1.1.1 Motivation for a Flight Dynamics Model Standard

Frankly, there is no presently accepted method for
exchanging models between simulation facilities.
Virtually every simulation site in the aerospace
community has different simulation architectures, data
formats, and software. This is true not only for specific
models of specific aircraft, but even for models and
software that could be invariant across the aerospace

community, such as equations of motion, axis
transformations, numerical integration techniques,
atmosphere models, etc. This lack of standardization is
true even within the same government departments and
within large corporations. Each one has their own models
and methods for performing flight and space simulation.

As a result, every time a model is sent from one facility to
another, unique import and export software must be
written and tested to facilitate the model exchange. Figure
1.1 below represents what is typical in industry. Every
time one simulator site, for example a research,
development, test and evaluation (RDT&E) simulator at
site A, wants to send a model or even components of a
model such as an updated aerodynamic function to site B,
they have to write import and export tools specifically for
that site. And if they want to send the same information to
site C they have to write different import and export tools.
This is obviously very inefficient. If there are many
different sites (10-30 sites are not at all unusual, in fact
often for most large weapon systems there are more then
10 sites of simulators with different architectures [2]) the
import/export task becomes prohibitive. Therefore,
normally it is simply not done. Each site does its own
model configuration control and has its own strengths and
weaknesses in the model. The real inefficiency is that
when each site works independently, and a specific site
learns how to improve the model, the other sites do not
benefit, and vice-versa. Additionally, even when the
model is sent between sites there is typically very little
verification or validation data sent.

Simulator Site C
(for example-

a training device)

Import/Export
Tools for Site A

Simulator Site A
(for example,

a RDT&E simulator)

Simulator Site B
(for example,

an analysis simulation)

Import/Export
Tools for Site C

Import/Export
Tools for Site C

Import/Export
Tools for Site B

Import/Export
Tools for Site B

Import/Export
Tools for Site A

Different import and
export tools are

required for every site
with which models are

exchanged

Figure 1.1 The existing problem inhibiting the exchange of models, and therefore collaboration, between sites.

Simulator Site C
(for example-

a training simulator site)

Standard
Exchange

Format
(XML/HDF 5)

Standard Import/
Export Tools

Simulator Site A
(for example-

a RDT&E simulator)

Simulator Site B
(for example-

An analysis simulation)

Standard Import/
Export Tools

Standard Import/
Export Tools

Only need to build the
import/export tools

once!

Figure 2.1 The simulation model exchange standard allows one set of tools to be used to exchange models between any
other facility-facilitating collaboration between simulation sites

2. One solution - a standard format to
exchange models and validation data

The proposed ANSI standard establishes the definition of
the information and format used to exchange air vehicle
simulations and validation data between disparate
simulation facilities. This standard is not meant to require
facilities to change their internal formats or standards.
With the concept of an exchange standard, facilities are
free to retain their well-known and trusted simulation
hardware and software infrastructures. The model is
exchanged through the standard, so each facility only
needs to create import/export tools to the standard once.
Then they can use these tools to exchange models with
any facility at minimal effort, instead of making unique
import/export tools for every facility that they exchange
with. Over time, as tools improve, an organization might
logically evolve to using the standard as their internal
format. However, they would not be forced to do so on a
specific schedule or to qualify for any specific program.
This makes the standard very attractive to all
organizations. Figure 2.1 illustrates this concept.

The standard includes definition of the information in
order to clarify the information exchanged. Such
clarification includes axis systems referenced, units, and
sign conventions used. The format (either XML or HDF)

defines the mechanism used to facilitate automation of the
exchange of the information. Using the definitions in the
standard, a list of simulation variable names and axis
system is included. This list of standard variables names
further simplifies the exchange of information, but is not
required.

2.1 Present Applications of the Standard

The standard is presently nearing its first release. It has
excellent application in the exchange of aerodynamic
models. Aerodynamic simulation models typically consist
of multi-dimensional function tables and very simple
math to look up these tables and compute aerodynamic
forces and moments in specific axis systems, usually a
body axis system. The standard handles this very well and
provides a very flexible method for meeting the user’s
needs. The function table standard is well developed and
includes capability to include the provenance (where the
data came from) all the way down to an individual data
point basis. Additionally it allows statistical information
to be included with the data to better facilitate Monte
Carlo and other uncertainty studies.

Since aerodynamic functions for nonlinear simulations
may have many multidimensional functions with literally
millions of data points, the management of these

aerodynamic models is a significant issue. It is very
difficult to keep track of where the data came from for a
specific model and the specific aerodynamic functions are
frequently changed to better match expected response and
validation data. It is this area where the standard will be
of immediate benefit to the community. When a specific
aerodynamic function is improved to match the response
of the aircraft it will be easy to promulgate throughout the
rest of the simulation community of that aircraft.
Unfortunately this is presently not done on a routine basis.

Weight and balance models are typically simple math and
table look-ups and therefore, like aerodynamic models,
the standard is well suited in transferring this information.

For engine models the nonlinear function representation is
well taken care of by the function table look ups but the
math for the model becomes more complicated; this first
version of the standard supports arbitrary propulsion
calculations but does not support dynamic states or engine
control systems.

Other components of the model such as ground reactions,
control systems, electrical and hydraulic systems, and
avionics models are not addressed by the standard. Any
nonlinear functions and simple math routines could be, of
course, accommodated by the standard, but the normal
higher complexity of the differential equations required in
these models will be supported in a later version of the
standard.

2.2 Components of the standard

The standard is really a method of communicating flight
model information. This work has attempted to draw upon
other existing work. For example, the axis system is
consistent with published AIAA recommended practices
[3] and DIS axis system definitions [4].

The standard consists of four sections and an introduction.
The four sections are:

• Standard axis systems
• Standard variable names
• Standard function table formats
• Standard validation data formats (time history or

frequency domain data format)

2.2.1 Standard axis systems

The axis system definition is complete and based on
AIAA recommended practice [3] and DIS standards [4]
already published. The standard is the overlap of both of
these standards. The variable names reference the axis
systems used.

Axis system standards also are reflected in the variable
naming convention. When applicable, the axis system is
included in the variable name. The following systems are
proposed:

• Geocentric Earth Centered/ Earth Fixed (ECEF) Axis
System

• Body Axis Coordinate System
• Flat Earth Axis System

2.2.2 Standard variable names

It is important to understand that this is an interchange
standard. Part of the standard is variable definitions and
axis system definitions to facilitate the interchange of
information. These components of the standard are not to
require people to use certain variable names or axis
systems but make it easy to communicate information via
standard names and standard axis systems when desired.

It is much simpler to exchange information when the
exchange is through common definitions of variables,
units, sign convention, and axis systems. Without the
standard variable names and axis systems, not only does
the data itself have to be exchanged but a complete set of
definitions defining what the data is must be exchanged.
If the standard variable names and axis systems are used
then only the data needs to be exchanged with a tag
saying what the variable name is. The standard contains
the rest of the information.

The variable naming convention includes a methodology
for naming new variables to allow consistency when
adding variables to the standard. It is also consistent with
object oriented design techniques and structured software.

The variable name standard actually has two distinct
parts:

• A list of standard variable names for variables typical
of aircraft simulations

• A methodology and convention for defining variables
specific to a simulation domain so the list may be
expanded at the local and national organizational
levels.

The general rules for naming variables and are similar to
what is generally used in C and C++ programming:

• Variables shall have meaningful names. Mnemonics
will not be used. Standard abbreviations are allowed.

• Distinct words in variable names shall be separated
by capital letters.

• Variable names shall not exceed 60 characters in
length. Brief but concise names are most effective.

• A short variable name (8 characters) is allowed as an
alias.

• The first letter of the variable name is lower case.
Units should be all lower case. This reduces
ambiguity.

Methodology for Creating New Names

The method for creating a new variable name is as
follows.

Each name has up to six components. All components are
not required to be used because in many cases they do not
apply. These components are:

(prefix)_(variable source domain)(axis or reference
system)(specific axis or reference)(core name)_(units)

The purpose of the prefix is to identify the variable in two
ways. The prefix is used to denote the key variables in the
model, which are the model states and state derivatives.
Mathematically, all outputs of the model are derived from
these.

It is important to emphasize identification of the states
and the inputs are a key factor in simulator software
development and maintenance of existing simulation
software. This convention should hold true for control
states, landing gear states, and any dynamic system in the
vehicle.

Examples of standard variables:

thrustBodyXForce_N

• thrust - the domain of the variable (as opposed to
aero for example)

• body - indicate the axis system
• X - indicates the specific axis
• Force - is the core variable name
• N - indicates unit of measure (Newtons in this case)

s_bodyXVelocity_fs-1

• s_ - prefix indicates that this is a state variable
• body - indicate the axis system
• X - indicates the specific axis
• Velocity - is the core variable name
• fs-1 - indicates unit of measure, feet per second.

bodyRollRate_ds-1

• The lack of the s_ prefix indicates that this is not the
roll rate state variable

• body - indicate the axis system
• Roll - indicates the specific axis
• Rate - core variable name
• ds-1 - unit of measure, degrees per second.

2.2.3 Standard function tables

The first and foremost design objective of the Standard
Data Table Format was to make a data format that would
include all the information about real multi-
dimensional data, not just the data values. This
objective reflects the fact that, in the general case of the
independent variables for a multi-dimensional table, the
independent variables have different number of
breakpoints, different breakpoints, and different valid
ranges. A second design objective was to allow the table
to contain information on where the data points come
from (provenance, via reference), and a confidence
interval for the data. Confidence Intervals can be used for
Monte Carlo simulations and to mathematically combine
two different estimates of the same parameter at the same
point. Therefore, confidence statistics are extremely
valuable when attempting to update a data set (however
the user must be careful as not all confidence intervals are
equivalent, or even meaningful). Finally, the table has to
be easy to read by the computer and the human being, and
be self-documenting as much as possible.

Figure 2.2 presents a fairly standard three-dimensional set
of data as is typical of aerodynamic data from flight test
or from a wind tunnel. In the example given, lift
coefficient is a function of angle-of-attack, Mach number,
and a control position. As a more general statement, the
function output, dependent variable CLALFA, is
dependent on three inputs (the independent variables)
alfa, Mach, and delta_s. Close examination of the data
given will reveal the following characteristics:

The number of breakpoints of the independent variables
varies for each independent variable. Not only are there a
different number of angle-of-attack (alfa) breakpoints, but
also a different number of Mach number (Mach) and
control position (delta_s) breakpoints. The standard
defines this as an “ungridded table.”

The values (breakpoints) of the independent variables are
different. Again, an “ungridded table.”

The valid ranges of the independent variables are
different. (“ungridded table”)

CLALFA(alfa, Mach,delta_s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-20 0 20 40 60 80 100 120

alfa

Mach=0.6, delta_s=-5
Mach=0.7, delta_s=-5
Mach=0.8, delta_s=-5
Mach=0.6, delta_s=0
Mach=0.8, delta_s=0

Figure 2.2 An Illustration of a Three-Dimensional Function Table, CLALFA (alfa, Mach, delta_s)

The above three differences are not consistent for all the
data. For example, in the example table the alfa
breakpoints for Mach = 0.6 and Mach = 0.7 for delta S =
–5 are identical.

For the function data there is other information not shown
in figure 2.2 that is of significant importance to the user,
without which the data is not very useful. In general this
information is:

• where did the data come from? (For example what
report?)

• how is it defined? (For example, is this at a specific
altitude? What configuration is it for?)

• what are the engineering units of the output (the
dependent variable) and the independent variables?

• what is the sign convention of the independent and
dependent variables? (For example, is the control
position positive trailing edge up or trailing edge
down? Exactly which control surface is it?)

• who created the table? (Not where the data came
from, but what person decided that this was the
correct data for this table?)

• how has it been modified and for what reason?
• how accurate is the data estimated to be? (Or,

mathematically what is the confidence interval of the
data?)

• By what method is the data intended to be
interpolated? (For example, linear interpolation or bi-
cubic spline interpolation?)

• By what method is the data intended to be
extrapolated for data with different ranges?

The standard exchange format has data elements that
contain all of the above information. It has been
implemented in XML as seven Major Elements and is
introduced below and discussed in detail in the simulation
exchange markup language reference manual [5].

3. Overview of the XML model standard

3.1 XML itself

The eXtensible Markup Language, XML, is an World-
Wide Web Consortium (W3C) standard means of
encoding information in a human- and machine-readable
way, similar to the way information is encoded in
hypertext markup language (HTML) for web browsers.
XML is extensible in that a set of markup tags and
allowable information hierarchy can be designed for each
type of data to be encoded; by agreeing to such a
grammar (or XML application), data can be freely
exchanged between parties.

Several benefits of using XML are immediately available:
• The data document can be validated against the

grammar definition to ensure proper encoding; this
helps catch encoding mistakes.

• The information in the document can be read (and
edited) by humans while remaining usable for
machine processing.

• The data can be converted from one XML format to
another by use of another XML grammar, known as
eXtensible Stylesheet Language, documents. This
allows the data to be converted for viewing by any
standards-compliant web browser, potentially on-the-
fly.

• An increasing number of low-cost or freely available,
multi-platform XML editing tools are becoming
available; this should ease the adoption of XML for a
variety of data encoding applications (including flight
dynamic model exchanges).

3.2 The schema (DTD)

A schema, or XML grammar definition, has been
developed to handle the static parts of a flight dynamics
model [5]. (Work on a schema to handle arbitrary
dynamics is pending.) While this schema addresses only
part of the problem space, it does cover a large portion
thereof, namely the aerodynamic model, which consists of
tabular data and buildup equations. The schema also

allows incorporation, into the same XML file, of
verification data to ensure proper implementation of the
model by the recipient.

We have selected the older Document Type Definition
(DTD) method of expressing this schema, due to the
wider applicability of this format, rather than the newer
XML Schema Definition (XSD) language.

The schema provides a means to incorporate the
following model components:

• Definition of input, output, and local signals
(variables), including how one can be constructed
mathematically from other signals and functions

• Definition of breakpoint vectors (can be shared
between tables)

• Definition of dependent data tables (can be shared
between functions); with no arbitrary limit to number
of table dimensions

• Definition of table-based nonlinear functions
• Checkcase (verification) data

Through use of these elements, the schema allows a single
text-based data file that sufficiently describes any
arbitrary mapping between input values and output
values. This capability is more than adequate to describe
the most complex static aero model; other static
components of a typical aerospace vehicle simulation can
be described as well, including mass and inertia models
and static thrust models.

Additional information that is or can be encoded in the
model:
• Provenance, or pedigree, of the model (author, links

to documentation like formal reports)
• Uncertainty boundaries (useful for performing Monte

Carlo simulations)
• Record of changes made with granularity as fine as

per data point

The full Document Type Definition is available from the
project website; see Resources below.

3.3 The tools available thus far

The development of a standard for sharing data is a bit of
a chicken-versus-egg scenario: until sufficient tools exist
to make use of the exchange format, the format will not
be useful; until the format is useful, tools will be slow to
develop. To jump-start this process, several organizations
have begun development of tools to help promote the use
of the schema.

3.3.1 DAVEtools

A Java-based package, DAVEtools, has been developed
at NASA Langley and provides two capabilities. First, it
allows for a command-line exercise of the model (the user
is prompted for input values and the output values are
then calculated. Second, DAVEtools supports conversion
of the model into Simulink®, a graphical modeling and
analysis format developed by The Mathworks, Inc. as an
adjunct to their Matlab® product. DAVEtools takes as
input a model expressed in the XML-based grammar and
produces a Simulink® .mdl file and associated setup.m
script that can be opened and further developed within the
Matlab Simulink environment. A verification script can
be produced that will automatically verify the proper
implementation in Simulink by comparing output vectors
for several predefined input vectors to the model. This
tool, including source code, is available upon request (see
the Resources section of this paper).

3.3.2 Janus

A C++ application programming library, Janus, has been
developed for the Australian Defense Science &
Technology Organization (DSTO) that provides run-time
loading and interpretation of a model expressed with the
XML-based grammar; public release is pending.

3.3.3 NASA Ames Function Table Processor scripts

NASA Ames, an early innovator in digital flight
simulation, has developed Perl-based import scripts that
convert the tables found in the XML-based grammar into
their Function Table Processor source format. The scripts
also generate FORTRAN language code excerpts that
represent the interpolation and buildup equations based on
the tabular data. Availability of these scripts is internal to
NASA Ames simulation projects.

3.3.4 Extensible Stylesheet (XSL) conversion

An XSL conversion stylesheet that documents a model
expressed in the XML-based grammar into a Hypertext
Markup Language (HTML) format, suitable for viewing
with a conventional web browser, has been developed and
is available (see the Resources section of this paper). It is
named DAVE_html.xsl and serves as an example of how
XML

3.4 Simple example

To illuminate what a simple aerodynamic function might
look like when expressed in this XML-based grammar, an
example is given below; this expression corresponds with
the curve shown in figure 3.1:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE DAVEfunc SYSTEM "DAVEfunc.dtd">
<DAVEfunc>

<variableDef
varID="angleOfAttack_d"
name="Alpha" units="deg"

/>

<variableDef
varID="CmAlfa"
name="Cma"
units=""

/>

<breakpointDef
bpID="angleOfAttack_d_bp1">
<bpVals>

0, 10, 18, 20, 22, 23, 25, 27, 30
</bpVals>

 </breakpointDef>

 <griddedTableDef gtID="CmAlfa_Table1">
 <breakpointRefs>
 <bpRef
 bpID="angleOfAttack_d_bp1"/>
 </breakpointRefs>
 <dataTable>

-0.3, -0.2, -0.1, -.08, -0.05, -0.05,
-0.07, -0.15, -0.6

 </dataTable>
 </griddedTableDef>

 <function name="Cm_alpha_func">
 <independentVarRef

varID="angleOfAttack_d"/>
 <dependentVarRef varID="CmAlfa"/>
 <functionDefn>
 <griddedTableRef

gtID="CmAlfa_Table1"/>
 </functionDefn>
 </function>

</DAVEfunc>

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 5 10 15 20 25 30

Angle of Attack, deg

C
m

 a
lp

h
a
,

p
e
r

d
e
g

Figure 3.1 A simple aerodynamic function

This example shows an exceedingly simple aerodynamic
model with a single input, angle of attack, and single
interpolated function table giving the coefficient of pitch
stability (dCm/dα) as a function of angle of attack. The
two variables are defined (one for the input, Alpha, and

one for the output, Cma. The input variable is expected to
be in units of degrees; the output variable is
dimensionless. The defined function is a one-dimension
table with nine breakpoints and nine corresponding
values. Behavior beyond the bounds of the valid table
data (when Alpha is less than 0 or more than 90 degrees)
is not defined; it is possible to specify whether to
extrapolate or hold last value at either boundary.
Likewise, the provenance, uncertainty, and checkcase
information has been omitted for conciseness.

More elaborate examples are available at the project
website (see the Resources section below).

4. Overview of the HDF5 Validation Data
Standard

Development of a full-fledged exchange standard for
simulation models will require checkcase data for
dynamic models. While the current, limited, XML-based
grammar does include checkcase data sufficient to verify
the static models that can be encoded, this capability
needs to be expanded to allow for the inclusion of
dynamics in both the encoded model and in the checkcase
data. Thus, a time history of the behavior of inputs, states,
and outputs is necessary.

The features desirable in a standard time-history data file
format include

• Based on an international data encoding standard
• Availability of tools to manipulate and transform the

time-history data
• Compact (binary) yet computer-platform independent
• Tailorable to specific vehicle models

Hierarchical Data Format, version 5 (HDF5) meets those
needs and has been selected as the encoding scheme for
time-history checkcase data to verify dynamic flight
vehicle model exchanges.

HDF was developed by the National Center for
Supercomputing Applications (NCSA) (the birthplace of
the original Netscape web browser) at University of
Illinois at Urbana-Champaign (UIUC), along with
significant contributions by others. The fifth version,
HDF5, is actively supported and many "tools and I/O
libraries" have been developed "for analyzing,
visualizing, and converting scientific data." These tools
and libraries are, for the most part, freely available under
license from UIUC.

4.1 Existing JSF standard for flight test data

The US Department of Defense has adopted the HDF5 as
the standard encoding for flight test data from the Joint
Strike Fighter (F-35) program. This means the primary
contractor (Lockheed-Martin) and participating
government agencies and labs have the capability to read
and write HDF5. As a result, a number of tools already
exist that will benefit the standard model exchange effort.

The existing JSF HDF5 data standard, known as H5TD,
supports encoding of both time-dependent and frequency-
dependent data, so verification of exchanged flight
models can be performed in both the time- and frequency-
domains, an excellent recommended practice for
simulation validation.

4.2 Tailorable

Since the source code for the NCSA HDF5 tools are
available, portions of the software can be reused in
specialized tools designed to assist in adoption of the
model exchange standard.

4.3 Relationship to XML

HDF5 is, as the name implies, hierarchical in nature. This
is similar to how information is organized in XML. Since
the model structure itself is expressed using XML, it is
convenient that the capability exists to translate time-
history data from the compact HDF5 format into XML
(human-readable) via the h5dump utility and back again
using the h5gen program, both available from the NCSU
HDF project website (see Resources).

5. Resources
Additional examples and links to related information,
including the formal Document Type Definition and
available utility software tools discussed in this paper, can
be found at http://daveml.nasa.gov. There is link there to
provide feedback and to subscribe to a discussion group,
simstds@larc.nasa.gov.

Information about HDF5 is available from
http://hdf.ncsa.uiuc.edu/HDF5; the documentation page
(http://hdf.ncsa.uiuc.edu/HDF5/doc) is especially helpful.

6. Summary
The first version of the standard is fully developed and
includes data standards for both modeling and validation
data for dynamic models. Conceptually, the standard
applies to any system dynamic model and validation of
any system using time or frequency response data. It was
specifically designed for aerodynamic models and it has a
very well developed and tested XML format for function

table data with a Math ML link for simple mathematical
algebraic equations.

It is important to understand that since this is an
interchange standard, it additionally has variable
definitions and axis system definitions to facilitate the
interchange of information. These components of the
standard are not to require people to use certain variable
names or axis systems, but to make it easy to
communicate information via standard names and
standard axis systems when desired.

The standard leverages existing computer standards of
XML/MathML for the model and HDF-5 for transmittal
of time history data (or frequency domain data) for the
validation. The XML model definition has been tested in
an exchange of a high performance fighter model between
the Navy and NASA [6]. This testing of the standard was
used to optimize the information content and format of
the standard. Tools for importing and exporting to
Simulink and Fortran models have been developed.

The standard has been formally adopted by the DSTO
(Defense Science Technology Organization) of Australia
as a model standard. This has become a format that they
maintain all their model databases in. This is well beyond
the concept of an interchange standard but shows the
validity of the standard for representing aircraft math
models.

The standard is well along in the ANSI standard
application process with the American Institute of
Aeronautics and Astronautics. The authors solicit
feedback and interest on the standard.

7. References
[1] http://www.aiaa.org
[2] Jackson, E. Bruce and Hildreth, Bruce L.: "Flight

Dynamic Model Exchange Using XML," AIAA
paper 2002-4482, August 2002.

[3] Anon.: "Recommended Practice, Atmospheric and
Space Flight Vehicle Coordinates Systems,"
ANSI/AIAA R-004-1992.

[4] Anon.: "Standard for Distributed Interactive
Simulation-Application Protocols, Version 2.0,
Fourth Draft (Revised)," IST-CR-94-50, March 1994.

[5] AIAA Simulation Standards Working Group:
"Dynamic Aerospace Vehicle Exchange Markup
Language (DAVE-ML) Reference, Version 1.7b1,"
February 2004, available from
http://daveml.nasa.gov/DTDs/1p7b1/DAVE-
ML_ref.pdf

[6] Jackson, E. Bruce; Hildreth, Bruce L.; York, Brent
W.; and Cleveland, William B.: "Evaluation of a
Candidate Flight Dynamics Model Simulation
Standard Exchange Format," AIAA paper 2004-5038,
Providence, RI, August 2004.

Author Biographies
BRUCE HILDRETH is the older of the two Bruces and
has thus earned the coveted #1 designation. He is Vice
President and a Technical Fellow at SAIC in Lexington
Park, Maryland. He has been involved in flight test, flight
simulation and flight software and hardware development
for over 30 years, and wrote the first physics-based flight
simulation model at the Naval Air Warfare Center's
Manned Flight Simulator (MFS) facility at Patuxent
River, Maryland, of which he was the co-developer. He
presently serves as Subcommittee Chair for Standards of
the AIAA Modeling and Simulation Technical
Committee.

BRUCE JACKSON is a senior research engineer at
NASA Langley Research Center, Hampton, Virginia. He
has been needlessly rehosting perfectly good simulation
models for 24 years and would like to not have to do that
again. He has written two complete flight simulation
frameworks and is working on a third. He is lead
guidance and controls engineer for the HL-20 lifting body
concept and has designed or analyzed control laws for
Pegasus, X-43A, X-48A, X-37 and blended-wing body
transport aircraft. He has been involved in flying qualities
investigations for supersonic transports including the
Tupolev Tu-144 as well as conceptual models of the High
Speed Civil Transport.

