

Typed Variables in DAVE-ML

Typed Variables in DAVE-ML
TypedVars-v0.01.doc - 03/10/04
Giovanni A. Cignoni
This is a draft proposal for supporting specification of types (int, float, bool, …) in the DAVE-ML variable definitions. In general, the type specification provides more information about the variable. In particular, when the XML source is used to generate code in a language that supports types (C, C++, Java, …) the specification can be exploited to generate more efficient or more accurate code.

In the current DAVEfunc.dtd (v. 1.7b1) the variableDef element is specified as:

<!ELEMENT variableDef
 (description?, calculation?, isOutput?, uncertainty?)
>
<!ATTLIST variableDef
 name CDATA
#REQUIRED
 varID ID
#REQUIRED
 units CDATA
#REQUIRED
 axisSystem CDATA
#IMPLIED
 sign CDATA
#IMPLIED
 alias CDATA
#IMPLIED
 symbol CDATA
#IMPLIED
 initialValue CDATA
#IMPLIED
>

<!ELEMENT variableRef EMPTY>
<!ATTLIST variableRef
 varID IDREF
#REQUIRED
>

A straightforward solution is to add a new attribute to VariableDef:

 …
 type CDATA
#IMPLIED
 …

In the DTD the type specification is set as optional: old files are still valid. In any case it is the application reading the XML that decides to use or to simply ignore the type info.

The order of the attributes is not important. Probably, to improve human readability, it will be useful to suggest a conventional order, may be varID (as it is important as a reference), name, type, units, initialvalue, … , but this of course is land of personal taste.

It has to be discussed if the value of the type attribute has to be free or constrained to an enumerated set of values. The main problem of an enumerated set of values is backward compatibility: changing the set in the future may make illegal a number of already existent files. It is important to define a “good” initial set so that future changes, if any, will only add new types.

In the following it is prposed a possible set of values for the type attribute, and, as examples, their interpretation in C/C++ and Java.

	Attribute value
	Interpretation
	Example C/C++
	Example Java

	int
	Default integer
	int
	int

	int8
	Signed 8 bit integer
	char
	byte

	int16
	Signed 16 bit integer
	short
	short

	int32
	Signed 32 bit integer
	int or long
	int

	int64
	Signed 64 bit integer
	long
	long

	uint8
	Unsigned 8 bit integer
	unsigned char
	short

	uint16
	Unsigned 16 bit integer
	unsigned short
	int

	uint32
	Unsigned 32 bit integer
	unsigned int or long
	long

	uint64
	Unsigned 64 bit integer
	unsigned long
	long *

	float
	Default floating point
	float
	float

	float32
	32 bit floating point
	float
	float

	float64
	64 bit floating point
	double
	double

	float96
	96 bit floating point
	long double *
	double *

	float128
	128 bit floating point
	long double *
	double *

	bigint
	Multiple precision integer, such as in the GMP library
	mpz_t (GMP)
	-

	bigratio
	Multiple precision fraction, such as in the GMP library
	mpq_t (GMP)
	-

	bigfloat
	Floating point with arbitrary precision mantissa and limited precision exponent, such as in the GMP library
	mpf_t (GMP)
	-

	bool
	Boolean
	bool (std. typedef)
	boolean

	text8
	Text made by ASCII characters
	string (std. C++ lib)
	string

	text16
	Text made by characters in an extended coding (e.g. unicode)
	-
	string

Notes

Apart of general types with unspecified bit size, size is explicit in the type name. It seems the better way to clearly express the will of the author of the model. Float 96 and 128 are included because there are architectures that implement extended precision in three words (or little less) and other that do in four.

Big numbers, booleans and text types are included in the list for completeness, it has to be decided if they are useful, maybe they can be discarded.

In some cases (maked with a *) the translation in a specific language may result in a loss of data. For instance Java does not have unsigned integers, then an unsigned long cannot always be correctly converted in a long. But this is a problem of the target language.

TypedVars-v0.01.doc

1/1
TypedVars-v0.01.doc

2/2

